We will consider the role played by electron-vibration and electron-electron interactions, through Jahn-Teller (JT) and Coulomb interactions, respectively, in icosahedral systems in which triplet electronic states are coupled to h g -type vibrations. Starting from the electronic terms that arise from consideration of Coulomb interactions, we introduce JT couplings both within the terms and between nondegenerate terms. We show how the symmetry of the JT distortion can change when extra electrons are added, and give the conditions under which JT distortions can be suppressed entirely when the Coulomb interactions are sufficiently large. The relevance of our results to anions of the fullerene molecule C 60 are briefly discussed, and existing experimental measurements are used to estimate values for the quadratic JT coupling constants for these anions.