Multi-drug resistant Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), has become a worldwide, major health care problem. While initially restricted to clinical settings, drug resistant S. aureus is now one of the key causative agents of community-acquired infections. We have previously demonstrated that copper dependent inhibitors (cDis), a class of antibiotics that are only active in the presence of copper ions, are effective bactericidal agents against MRSA. A secondgeneration CDI, APT-6K, exerted bactericidal activity at nanomolar concentrations. At sub-bactericidal concentrations, it effectively synergized with ampicillin to reverse drug resistance in multiple MRSA strains. APT-6K had a favorable therapeutic index when tested on eukaryotic cells (TI: > 30) and, unlike some previously reported CDIs, did not affect mitochondrial activity. These results further establish inhibitors that are activated by the binding of transition metal ions as a promising class of antibiotics, and for the first time, describe their ability to reverse existing drug resistance against clinically relevant antibiotics. The rapid increase of antibiotic resistance within bacterial populations is associated with longer hospital stays, increased treatment costs, and more patient deaths 1,2. An estimated 700,000 individuals die each year as a result of infections with antibiotic resistant bacteria, and the amount of deaths are expected to increase if no alternative, effective therapies are developed 3. New antibiotics are essential to avoid a public health crisis. The identification of new antibiotics for Staphylococcus aureus is an especially urgent task, with antibiotic resistance in this bacterium already observed against some of the last line of defense antibiotics such as vancomycin, linezolid, and daptomycin 4. An alternative to the discovery of new antibiotics are drugs that restore the efficacy of available antibiotics and overcome bacterial drug resistance mechanisms. Ideal drugs would be ones that are both effective by themselves and that restore the activity of current antibiotics by reversing antibiotic resistance 5,6. Copper dependent inhibitors (CDIs) are a functionally new type of antibiotic gaining increased appreciation due to their ability to inhibit drug resistant bacteria such as S. aureus, Mycobacterium tuberculosis, Mycoplasma spp., and Neisseria gonorrheae 7-13. These compounds utilize copper for their activities and include the FDA approved drug disulfiram and anti-cancer compounds like 8-hydroxyquinoline (8HQ) 7,9,13-15. Hundreds of new CDIs with antibacterial and antifungal activity have been identified in drug screens against S. aureus, M. tuberculosis, and Cryptococcus neoformans using defined culture medium that contains physiologically relevant concentrations of copper that were previously not identified in these compound libraries when screened under industrial standard conditions (no consideration of transition metal concentrations), demonstrating the untapped potential of CDIs 10,12...