Gas carburizing is an effective surface treatment process for improving the hardness and wear resistance of different class of steels. The study reports an application of grey-incidence based Taguchi (GIBT) method in gas carburizing of case-hardening steels like AISI 4140, EN36, and 16MnCr5 which are widely employed in precision levers, transmission shafts, and pinions. Carburizing trials are performed using Taguchi’s L9 orthogonal array by varying the design parameters like carburizing temperature, soaking time, and tempering temperature. Surface hardness (SH), diffusion depth (DD), and wear loss (WL) are studied as process responses at the completion of various carburizing trials with replications. Optimal design variables are identified using grey incidence grade as a performance index in the GIBT method. The contribution of individual parameters is also studied using the analysis of variance (ANOVA). Microscopic examination and SEM images of the treated surface are also studied after validating the method of GIBT.