Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose Concerns over the pollution caused by internal combustion vehicles have increased owing to population and industrialization increment. Addressing the confrontations, the demand for electric vehicles (EVs) as a combustion engine substitute became necessary in responding to environmental worries from internal combustion. The development of bio lubricant in lubricating the sliding parts of EVs is required to maintain the sustainability idea and to improve the system performance, which this research tends to explore. Design/methodology/approach In this research, the enhancement of base Jatropha oil was done using polytetrafluoroethylene (PTFE) and hexagonal boron nitrate (h-BN) as additives. Different characterization was conducted on the new formulation to ascertain its anticorrosion tendency. The wear and friction behavior of the formulations on the tribo-pairs surfaces in contact were investigated using ball on flat tribometer to determine their tribological responsiveness as mineral lubricant alternative. To explore the surface topography, surface profilometer, scanning electron microscope and energy dispersive X-ray investigations were PTFE, lubrication and EV carried out. Findings The test’s input parameters were EVs’ usual load and sliding speed, and the addition concentrations for PTFE were 0.3 Wt.%, 0.4 Wt.%, 0.5 Wt.% and 0.6 Wt.%, whereas h-BN were 0.4 Wt.%, 0.8 Wt.% and 1.2 Wt.%, respectively. The study on corrosion demonstrated resistance when applied PTFE and h-BN additives in Jatropha oil. The analysis revealed that 0.5 Wt.% PTFE + 0.8 Wt.% h-BN concentrations significantly improved the tribological characteristics when compared to the base Jatropha oil. The application of formulations yielded percentage reduction of 8.67%, 10.98%, 7.34% and 7.35%, respectively, for 0.5% poly + 0.5% h-BN, 0.5% poly + 0.6% h-BN, 0.5% poly + 0.7% h-BN, 0.5% poly + 0.8% h-BN against base Jatropha oil under 20 N. Originality/value The formulation of PTFE and h-BN for electric transmission with wear and friction effects was accomplished in this paper. The mechanism of particle diffusing at the sliding contact on tribological behavior could be examined based on the created model of operation. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0235/
Purpose Concerns over the pollution caused by internal combustion vehicles have increased owing to population and industrialization increment. Addressing the confrontations, the demand for electric vehicles (EVs) as a combustion engine substitute became necessary in responding to environmental worries from internal combustion. The development of bio lubricant in lubricating the sliding parts of EVs is required to maintain the sustainability idea and to improve the system performance, which this research tends to explore. Design/methodology/approach In this research, the enhancement of base Jatropha oil was done using polytetrafluoroethylene (PTFE) and hexagonal boron nitrate (h-BN) as additives. Different characterization was conducted on the new formulation to ascertain its anticorrosion tendency. The wear and friction behavior of the formulations on the tribo-pairs surfaces in contact were investigated using ball on flat tribometer to determine their tribological responsiveness as mineral lubricant alternative. To explore the surface topography, surface profilometer, scanning electron microscope and energy dispersive X-ray investigations were PTFE, lubrication and EV carried out. Findings The test’s input parameters were EVs’ usual load and sliding speed, and the addition concentrations for PTFE were 0.3 Wt.%, 0.4 Wt.%, 0.5 Wt.% and 0.6 Wt.%, whereas h-BN were 0.4 Wt.%, 0.8 Wt.% and 1.2 Wt.%, respectively. The study on corrosion demonstrated resistance when applied PTFE and h-BN additives in Jatropha oil. The analysis revealed that 0.5 Wt.% PTFE + 0.8 Wt.% h-BN concentrations significantly improved the tribological characteristics when compared to the base Jatropha oil. The application of formulations yielded percentage reduction of 8.67%, 10.98%, 7.34% and 7.35%, respectively, for 0.5% poly + 0.5% h-BN, 0.5% poly + 0.6% h-BN, 0.5% poly + 0.7% h-BN, 0.5% poly + 0.8% h-BN against base Jatropha oil under 20 N. Originality/value The formulation of PTFE and h-BN for electric transmission with wear and friction effects was accomplished in this paper. The mechanism of particle diffusing at the sliding contact on tribological behavior could be examined based on the created model of operation. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0235/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.