Reactive powder concrete (RPC) is widely used in large-scale bridges, and its durability in coastal areas has become a significant concern. Straw fibers have been evidenced to improve the mechanical properties of concrete, while research on their influence on the chloride corrosion resistance of RPC is deficient. Therefore, it is essential to establish the relationships between the quantities and parameters of straw fibers and the properties of the resulting concrete. In this study, the mass loss rates (MLRs), the relative dynamic modulus of elasticity (RDME), the electrical resistance (R), the AC impedance spectrum (ACIS), and the corrosion rates of steel-bar-reinforced RPC mixed with 0%–4% straw fibers by volume of RPC were investigated. A scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to analyze the corrosion of steel bars. The reinforced RPC specimens were exposed to a 3% NaCl dry-wet alternations (D-As) and 3% NaCl freeze-thaw cycles (F-Cs) environment. The results show that, after adding 1%–4% straw fibers, the setting time and slump flow of fresh RPC were reduced by up to 16.92% and 12.89%. The MLRs were −0.44%–0.43% and −0.38%–0.42%, respectively, during the D-As and F-Cs. The relationship between the RDME and the fiber volume ratio was the quadratic function, and it was improved by 9.34%–13.94% and 3.01%–5.26% after 10 D-As and 100 F-Cs, respectively. Incorporating 4% straw fibers reduced the R values of the reinforced RPC specimens by up to 22.90% and decreased the corrosion rates after 10 D-As and 100 F-Cs by 26.08% and 82.29%, respectively. The impedance value was also increased. Moreover, a dense, ultra-fine iron layer and α-FeO(OH) were observed in the rust of rebars by SEM and XRD, as the corrosion resistance of rebars was enhanced. The results indicate that straw fibers improved the corrosion resistance of RPC, which can serve as a protective material to inhibit concrete cracking and thereby prevent rebar oxidation. This study provides theoretical support for the investigation of surface phenomena in reinforced RPC with straw fibers.