Neuroserpin is an axonally secreted serine proteinase inhibitor that is expressed in neurons during embryogenesis and in the adult nervous system. To identify target proteinases, we used a eucaryotic expression system based on the mouse myeloma cell line J558L and vectors including a promoter from an Ig--variable region, an Ig-enhancer, and the exon encoding the Igconstant region (C) and produced recombinant neuroserpin as a wild-type protein or as a fusion protein with C. We investigated the capability of recombinant neuroserpin to form SDS-stable complexes with, and to reduce the amidolytic activity of, a variety of serine proteinases in vitro. Consistent with its primary structure at the reactive site, neuroserpin exhibited inhibitory activity against trypsin-like proteinases. Although neuroserpin bound and inactivated plasminogen activators and plasmin, no interaction was observed with thrombin. A reactive site mutant of neuroserpin neither formed complexes with nor inhibited the amidolytic activity of any of the tested proteinases. Kinetic analysis of the inhibitory activity revealed neuroserpin to be a slow binding inhibitor of plasminogen activators and plasmin. Thus, we postulate that neuroserpin could represent a regulatory element of extracellular proteolytic events in the nervous system mediated by plasminogen activators or plasmin.Extracellular proteolysis exerted by serine proteinases has been implicated in a variety of processes in the nervous system during development and in adulthood. Among the serine proteinases recently reported to play a role in neural development and function, there are several well known proteins that had previously been found and characterized in nonneuronal functions, in particular blood coagulation and fibrinolysis. For example, tissue-type plasminogen activator (tPA) 1 and urokinase plasminogen activator (uPA) were found to be expressed in the nervous system (1, 2), and they have been demonstrated to be engaged in developmental processes such as cerebellar granule cell migration (3, 4), Schwann cell migration, and wrapping of axons (5), or neuromuscular synapse elimination (6). In the period of neurite outgrowth, plasminogen activators (PAs) have been found to be secreted at the growth cones of cultured neurons or neuronal cell lines (7,8), and they were demonstrated to modify the molecular composition of the neurites' substrata in vitro (9). In the adult nervous system, tPA is induced in the hippocampus after seizure, kindling, and long term potentiation (LTP) (10) and in the cerebellum after motor learning tasks (11), and mice lacking the gene for tPA (12) show a different form of hippocampal LTP (13,14). Furthermore, tPA has been demonstrated to be involved in excitotoxin-induced neuronal cell death in the murine hippocampus by converting locally secreted plasminogen to active plasmin (15, 16). Thrombin, which has been extensively characterized due to its important function in the blood clotting system, has been reported to be expressed in the nervous system (17). I...