Background: Our study analyzed the immune infiltration of esophageal adenocarcinoma (EAC) tumor cells and identified long non-coding ribonucleic acid (lncRNA) genes to construct a prognostic model of EAC to evaluate the survival prognosis of patients and explore potential therapeutic targets.
Methods:The data of 89 patients with EAC, including 11 normal tissue samples and 78 EAC of tumor tissue samples, were downloaded from The Cancer Genome Atlas public database. Perl script and R software were used to run the code, conduct the statistical analysis, calculate the risk coefficients of the patients, and conduct the Cox regression analysis, immune-related lncRNA survival analysis, risk analysis, principal component analysis (PCA), and receiver operating characteristic (ROC) curve analysis.Results: We screened and identified 19 prognostic biomarkers, including LINC01612, AC008443.2, and LINC02582, allocated the patients into high-and low-risk groups, and found significant differences in the prognosis between the high-and low-risk groups using the Kaplan-Meier survival analysis (P<0.001).A ROC curve was used to evaluate the feasibility of the prognostic model for EAC, and we found that the model had high predictability (area under the curve =0.964). A PCA analysis was performed of the complex transcriptome sequencing data and other cubes to transform the data into a 3-dimensional space constructed by feature vectors.Conclusions: Our study effectively screened and identified the lncRNA genes related to the immune infiltration of EAC and successfully constructed a prognostic model. In total, 19 potential diagnostic and therapeutic target genes, including LINC01612, AC008443.2, and LINC02582, were identified that have certain significance in guiding the clinical treatment of EAC patients.