By identifying homogeneity in bone and soft tissue covariation patterns in living hominids, it is possible to produce facial approximation methods with interspecies compatibility. These methods may be useful for producing facial approximations of fossil hominids that are more realistic than currently possible. In this study, we conducted an interspecific comparison of the nasomaxillary region in chimpanzees and modern humans with the aim of producing a method for predicting the positions of the nasal tips of Plio-Pleistocene hominids. We addressed this aim by first collecting and performing regression analyses of linear and angular measurements of nasal cavity length and inclination in modern humans (Homo sapiens; n = 72) and chimpanzees (Pan troglodytes; n = 19), and then performing a set of out-of-group tests. The first test was performed on four subjects that belonged to the same genus as the training sample, i.e., Homo (n = 2) and Pan (n = 2), and the second test, which functioned as an interspecies compatibility test, was performed on Pan paniscus (n = 1), Gorilla gorilla (n = 3), Pongo pygmaeus (n = 1), Pongo abelli (n = 1), Symphalangus syndactylus (n = 3), and Papio hamadryas (n = 3). We identified statistically significant correlations in both humans and chimpanzees with slopes that displayed homogeneity of covariation. Prediction formulae combining these data were found to be compatible with humans and chimpanzees as well as all other African great apes, i.e., bonobos and gorillas. The main conclusion that can be drawn from this study is that our set of regression models for approximating the position of the nasal tip are homogenous among humans and African apes, and can thus be reasonably extended to ancestors leading to these clades.