The flow path of vertebrate hearts has a looped configuration characterized by curved (sigmoid) and twisted (chiral) components. The looped heart design is phylogenetically conserved among vertebrates and is thought to represent a significant determinant of cardiac pumping function. It evolves during the embryonic period of development by a process called “cardiac looping”. During the past decades, remarkable progress has been made in the uncovering of genetic, molecular, and biophysical factors contributing to cardiac looping. Our present knowledge of the functional consequences of cardiac looping lags behind this impressive progress. This article provides an overview and discussion of the currently available information on looped heart design and its implications for the pumping function. It is emphasized that: (1) looping seems to improve the pumping efficiency of the valveless embryonic heart. (2) bilaterally asymmetric (chiral) looping plays a central role in determining the alignment and separation of the pulmonary and systemic flow paths in the multi-chambered heart of tetrapods. (3) chiral looping is not needed for efficient pumping of the two-chambered hearts of fish. (4) it is the sigmoid curving of the flow path that may improve the pumping efficiency of lower as well as higher vertebrate hearts.