Abstract:The critical dimension of an ergodic non-singular dynamical system is the asymptotic growth rate of sums of consecutive Radon–Nikodým derivatives. This has been shown to equal the average coordinate entropy for product odometers when the size of individual factors is bounded. We extend this result to $G$-measures with an asymptotic bound on the size of individual factors. Furthermore, unlike von Neumann–Krieger type, the critical dimension is an invariant property on the class of ergodic $G$-measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.