2015
DOI: 10.1017/etds.2015.69
|View full text |Cite
|
Sign up to set email alerts
|

The critical dimension for -measures

Abstract: The critical dimension of an ergodic non-singular dynamical system is the asymptotic growth rate of sums of consecutive Radon–Nikodým derivatives. This has been shown to equal the average coordinate entropy for product odometers when the size of individual factors is bounded. We extend this result to $G$-measures with an asymptotic bound on the size of individual factors. Furthermore, unlike von Neumann–Krieger type, the critical dimension is an invariant property on the class of ergodic $G$-measures.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 11 publications
0
0
0
Order By: Relevance