The fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is known to be very sensitive to a magnetic field, assisting the spin conversion in the resulting geminate radical ion pair (RIP), (1, 3)[D(+)...A(-)]. The relative increase of the fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the dielectric constant of the solvent, ɛ. This phenomenon first studied experimentally is at first reproduced here theoretically by means of the so called integral encounter theory. It was shown to be very sensitive to the position of the exciplex energy level relative to the levels of exciplex precursors and the charged products of its dissociation. The results obtained strongly depend on the dielectric properties of the solvents as well as on the exciplex and RIP formation rates.