Crustal formation and evolution processes are of critical importance in the geochemical and thermal evolution of planets. As an aid to understanding these processes on Venus, we develop a general paradigm for: (1) the derivation of primary magmas, and (2) the range of possible conditions for remelting of crustal materials and the evolution of the products of remelting. We use as a basis for this paradigm the present knowledge of the bulk and surface composition, thermal structure, and surface geological and geochemical processes. For the range of conditions of derivation of primary magmas and crustal remelting, a wide range of magma types is possible, and no magma type can be arbitrarily excluded from consideration on Venus. We conclude that magmatic and volcanic activity on Venus, in its broadest sense, could be very similar to that on the Earth, although eruption styles are expected to vary due to environmental conditions (Head and Wilson, 1986). Major differences in magmatic and volcanic activity are likely to occur in two environments on Venus: (1) those analogous to terrestrial island arcs, where due to the absence of water, melts should be SiO+ndersaturated, and the more fluid melt products may produce widespread deposits of SiOz-poor ferrobasalts rather than more viscous SiOz-rich magmas and composite volcanoes, and (2) those in plains regions influenced by mantle plumes and hot spots, where highly picritic melts may periodically flood vast regions of the surface.