Most vaccines confer protection via the elicitation of serum antibodies, yet more than 100 y after the discovery of antibodies, the molecular composition of the human serum antibody repertoire to an antigen remains unknown. Using high-resolution liquid chromatography tandem MS proteomic analyses of serum antibodies coupled with next-generation sequencing of the V gene repertoire in peripheral B cells, we have delineated the human serum IgG and B-cell receptor repertoires following tetanus toxoid (TT) booster vaccination. We show that the TT + serum IgG repertoire comprises ∼100 antibody clonotypes, with three clonotypes accounting for >40% of the response. All 13 recombinant IgGs examined bound to vaccine antigen with K d ∼ 10 −8 -10 −10 M. Five of 13 IgGs recognized the same linear epitope on TT, occluding the binding site used by the toxin for cell entry, suggesting a possible explanation for the mechanism of protection conferred by the vaccine. Importantly, only a small fraction (<5%) of peripheral blood plasmablast clonotypes (CD3 − CD14 − CD19 + CD27 ++ CD38 ++ CD20 − TT + ) at the peak of the response (day 7), and an even smaller fraction of memory B cells, were found to encode antibodies that could be detected in the serological memory response 9 mo postvaccination. This suggests that only a small fraction of responding peripheral B cells give rise to the bone marrow long-lived plasma cells responsible for the production of biologically relevant amounts of vaccine-specific antibodies (near or above the K d ). Collectively, our results reveal the nature and dynamics of the serological response to vaccination with direct implications for vaccine design and evaluation.B-cell repertoire | proteomics M ost approved vaccines confer protection against infectious diseases by the induction of long-lived plasma cells (LLPCs), which secrete antibodies that serve to neutralize and opsonize the pathogen for many years or decades (1-3). Additionally, the generation of memory B cells (mBCs) provides both a mechanism for the rapid synthesis of affinity matured, antigenspecific antibodies following rechallenge and a means to diversify the humoral immune response to confer protection against rapidly evolving viruses or bacteria (4). Although some vaccines elicit antibody titers that remain virtually constant for many decades, for others, including the tetanus toxoid (TT) vaccine, antibody titers wane monotonically over time (5). Booster immunization triggers the rapid expansion and differentiation of cognate B cells, generating antigen-specific plasmablasts that peak in concentration in peripheral blood after 6-7 d and subsequently rapidly decline to nearly undetectable levels (6, 7). Some, but not all, of these peak-wave plasmablasts migrate to specialized niches overwhelmingly located in the bone marrow (BM) and survive as LLPCs (8), which constitute the major source of all classes of Ig in the serum (9).The establishment of serological memory following either primary or booster vaccination is not understood well (10-14)...