2003
DOI: 10.1021/ja0374372
|View full text |Cite
|
Sign up to set email alerts
|

The Crystal Structures of the Chiral Alkyllithium Bases [n-BuLi·(−)-Sparteine]2 and [Et2O·(i-PrLi)2·(−)-Sparteine]

Abstract: The crystal structures of the two chiral alkyllithium bases [n-BuLi.(-)-sparteine]2 (1) and [Et2O.(i-PrLi)2.(-)-sparteine] (2) have been determined. For compound 1, a symmetric dimer is observed in the solid state, with two (-)-sparteine ligands coordinating to the lithium centers. Because of steric reasons, compound 2 crystallizes as an unsymmetric dimer with the four methyl groups pointing away from the sterically demanding (-)-sparteine ligand. Compound 2 contains one four-coordinate lithium center [coordin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
24
0
2

Year Published

2005
2005
2017
2017

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 81 publications
(26 citation statements)
references
References 22 publications
0
24
0
2
Order By: Relevance
“…To date, mostly complexes involving i PrLi have attracted attention and the corresponding structures, either in the solid state and/or in solution, are available in literature . They imply chelating additives such as N , N , N′ , N′ ‐tetramethylethylenediamine (TMEDA), N , N , N′ , N′ ‐tetraethylethylenediamine (TEEDA), ( R , R )‐ N , N , N′ , N′ ‐tetramethylcyclohexane‐1,2‐diamine (TMCDA), (−)‐sparteine and (+)‐sparteine surrogate . A [ i PrLi] 2 dimeric core has been put in evidence in the presence of TMEDA, ( R , R )‐TMCDA, (−)‐sparteine and O'Brien's sparteine (+)‐surrogate (Figure , A – D ).…”
Section: Figurementioning
confidence: 99%
See 1 more Smart Citation
“…To date, mostly complexes involving i PrLi have attracted attention and the corresponding structures, either in the solid state and/or in solution, are available in literature . They imply chelating additives such as N , N , N′ , N′ ‐tetramethylethylenediamine (TMEDA), N , N , N′ , N′ ‐tetraethylethylenediamine (TEEDA), ( R , R )‐ N , N , N′ , N′ ‐tetramethylcyclohexane‐1,2‐diamine (TMCDA), (−)‐sparteine and (+)‐sparteine surrogate . A [ i PrLi] 2 dimeric core has been put in evidence in the presence of TMEDA, ( R , R )‐TMCDA, (−)‐sparteine and O'Brien's sparteine (+)‐surrogate (Figure , A – D ).…”
Section: Figurementioning
confidence: 99%
“…They imply chelating additives such as N , N , N′ , N′ ‐tetramethylethylenediamine (TMEDA), N , N , N′ , N′ ‐tetraethylethylenediamine (TEEDA), ( R , R )‐ N , N , N′ , N′ ‐tetramethylcyclohexane‐1,2‐diamine (TMCDA), (−)‐sparteine and (+)‐sparteine surrogate . A [ i PrLi] 2 dimeric core has been put in evidence in the presence of TMEDA, ( R , R )‐TMCDA, (−)‐sparteine and O'Brien's sparteine (+)‐surrogate (Figure , A – D ). If the presence of diethylether seems not to prevent the dimerization ( C ), introducing THF to the above (−)‐ and (+)‐sparteine dimeric complexes ( C and D , respectively) provides monomeric i PrLi chelates incorporating one molecule of THF ( E and F ).…”
Section: Figurementioning
confidence: 99%
“…Normalmente a N,N,N',N'-tetrametiletilenodiamina (TMEDA) é utilizada para esta finalidade, unindo-se ao lítio como um ligante bidentado, como se comprovou no estudo de cristalografia de raios-X de monocristal para a TMEDA e para a (-)-esparteína. [4][5][6] Durante a última década se utilizou também triaminas em litiações, cujos complexos com bases organolitiadas são bases mais fortes que as geradas com as diaminas comentadas anteriormente. 7 Em solução, a adição de TMEDA provoca a dissociação dos agregados devido à tendência do lítio a coordenar-se ao nitrogênio, formando um complexo no qual o átomo de Os autores sugerem a existência de um intermediário muito reativo proveniente da dissociação do dímero [TMEDA.n-BuLi] 2 e posterior complexação do substrato que atua, neste caso, como agente quelante (Esquema 4).…”
Section: Esquema 1 Reação Geral De Desprotonação-adição Eletrofílicaunclassified
“…(À)-Sparteine and its diastereoisomer -isosparteine are well-suited as chiral bidentate ligands for many applications, e.g., for metal complexation [1][2][3][4][5][6][7][8] and asymmetric synthesis [9][10][11][12][13][14]. They are composed of two quinolizidine systems; in sparteine, one forms a double-chair trans-quinolizidine system A/B, which is relatively resistant to configurational-conformational changes, the other, of rings C and D, is much more susceptible to inversion at the N16 atom.…”
Section: Introductionmentioning
confidence: 99%