Chemical recycling
of synthetic polymers represents a promising
strategy to deconstruct plastic waste and make valuable products.
Inspired by small-molecule C–H bond activation, a visible-light-driven
reaction is developed to deconstruct polystyrene (PS) into ∼40%
benzoic acid as well as ∼20% other monomeric aromatic products
at 50 °C and ambient pressure. The practicality of this strategy
is demonstrated by deconstruction of real-world PS foam on a gram
scale. The reaction is proposed to proceed via a C–H bond oxidation
pathway, which is supported by theoretical calculations and experimental
results. Fluorescence quenching experiments also support efficient
electron transfer between the photocatalyst and the polymer substrate,
providing further evidence for the proposed mechanism. This study
introduces concepts from small-molecule catalysis to polymer deconstruction
and provides a promising method to tackle the global crisis of plastic
pollution.