Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Marinated beef galbi is a traditional Korean dish cooked with soy sauce, pear juice, onion, sesame oil, and sugar. However, there are many differences in beef galbi, including flavor and physicochemical aspects, depending on cooking conditions. Therefore, the physicochemical characteristics of marinated beef galbi prepared through various recipes was evaluated for its effects on pH, texture, aging, proteolysis, heating conditions, cooking time, and flavor compounds (pyrazines, IMPs, or FAAs). There were significant differences in salt concentration (0.8~3.03%), pH (4.89~6.22), and solid soluble contents (1.34-6.31 Brix) between recipes in this study. In the Pearson assay for sensory evaluation, overall preference correlated well with texture (a well-known sensory attribute in meat evaluation). Controlling the pH of meat through soaking in lemon solution, alkali water, phosphate, and baking powder solution, improved water holding capacity as much as 9 to 15% compared with the control. The myofibril index (MFI) of marinated meat stored at 4 o C increased 32% with 24 hours of aging and reached 39% at 48 hours of aging, and its fragmentation was observed through microscopy. SDS-PAGE showed hydrolysis of acid-soluble collagen by the pear juice, possibly related to meat tenderness. On the basis of surface temperature, the cooking time was estimated to be 8 minutes with pan heating at 170 o C, 6 minutes at 270~300 o C, and 4 minutes with charcoal at 700~900 o C. Different pyrazine compounds, such as 2-methyl-3-phenylpyrrol(2,3-b) pyrazine (the typical product of the browning reaction) was mainly detected, and IMP (one of the main taste compounds in beef) was in higher amounts with the charcoal treatment, potentially related to its flavor preference among treatments. Our results demonstrate an effective case study and cooking system for beef galbi.
Marinated beef galbi is a traditional Korean dish cooked with soy sauce, pear juice, onion, sesame oil, and sugar. However, there are many differences in beef galbi, including flavor and physicochemical aspects, depending on cooking conditions. Therefore, the physicochemical characteristics of marinated beef galbi prepared through various recipes was evaluated for its effects on pH, texture, aging, proteolysis, heating conditions, cooking time, and flavor compounds (pyrazines, IMPs, or FAAs). There were significant differences in salt concentration (0.8~3.03%), pH (4.89~6.22), and solid soluble contents (1.34-6.31 Brix) between recipes in this study. In the Pearson assay for sensory evaluation, overall preference correlated well with texture (a well-known sensory attribute in meat evaluation). Controlling the pH of meat through soaking in lemon solution, alkali water, phosphate, and baking powder solution, improved water holding capacity as much as 9 to 15% compared with the control. The myofibril index (MFI) of marinated meat stored at 4 o C increased 32% with 24 hours of aging and reached 39% at 48 hours of aging, and its fragmentation was observed through microscopy. SDS-PAGE showed hydrolysis of acid-soluble collagen by the pear juice, possibly related to meat tenderness. On the basis of surface temperature, the cooking time was estimated to be 8 minutes with pan heating at 170 o C, 6 minutes at 270~300 o C, and 4 minutes with charcoal at 700~900 o C. Different pyrazine compounds, such as 2-methyl-3-phenylpyrrol(2,3-b) pyrazine (the typical product of the browning reaction) was mainly detected, and IMP (one of the main taste compounds in beef) was in higher amounts with the charcoal treatment, potentially related to its flavor preference among treatments. Our results demonstrate an effective case study and cooking system for beef galbi.
The purpose of this study was to apply molecular gastronomy and spherification methodology to persimmon deserts. We prepared 'persimmon calcium alginate beads' and investigated their physical and sensory characteristics by adding different concentrations of sodium alginate (0.4, 0.6, 0.8, and 1.0%). Lightness and yellowness decreased significantly as the concentration of sodium alginate increased. However hardness, springiness, chewiness, cohesiveness, and resilience but not adhesiveness tended to increase as the concentration of sodium alginate increased. The thickness of the beads increased as the concentration of sodium alginate increased. In contrast, the thickness of the membrane decreased as the concentration of alginate increased from 0.8 to 1.0% suggesting that the amount of sodium alginate had reached a critical point. Quantitative descriptive analysis showed that voluminosity, springiness, hardness, chewiness, and residue tended to increase as the concentration of sodium alginate increased. Overall preference reached a peak at 0.4% sodium alginate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.