Inheritance and linkage relationships of several morphological and isozyme loci are described in chickpea (Cicer arietinum L.). Segregation data obtained from several F2 families confirmed the previously observed mode of inheritance for most of the morphological loci. Additional morphological markers in chickpea are also described. Most of the isozyme loci studied showed codominant expression and fit expected Mendelian segregation ratios. However, distorted ratios were also observed for some loci. Linkage was found betweenPgd-c, the locus encoding the cytosolic form of 6-phosphogluconate dehydrogenase, andHg, the locus controlling plant growth habit. These 2 loci were separated by approximately 18 recombinational map units. A similar linkage between comparable loci was previously reported in pea (Pisum sativum L.) (Weeden and Wolko 1990). Linkage was also detected among 3 isozyme loci; the cytosolic form of phosphoglucomutase (Pgm-c), glucose-1-phosphate transferase (Gpt1), and the plastid specific form of 6-phosphogluconate dehydrogenase (Pgd-p). The linkage of 2 loci (Pgm-c andPgd-p) in this cluster is also conserved in pea and lentil (Lens Miller). The linkage between an acid phosphatase locus (Acp3) and the locus specifying the cytosolic form of glucosephosphate isomerase (Gpi-c) in chickpea suggested another linkage group in common with pea. Additionally, other linkages that were not previously observed in chickpea or related genera included the linkage of the cytosolic form of aconitase (Aco-c) with adenylate kinase (Adk1) and fructokinase (Fk3), and the linkage of a locus encoding the mitochondrial specific aconitase (Aco-m) with a seed protein locus (Spr1). The loci determining flower color (P), epicotyl color (Gst), seed coat color (T (3)), and seed surface (Rs) were associated with the locus encoding glucose-1-phosphate transferase (Gpt2). These results, along with previous studies, suggest that pea, lentil and chickpea have several common linkage groups consisting of homologous genes. This also indicates that linkages found in one genus can be used to predict similar linkages in related genera in the development of linkage maps.