Real-time data analysis and management are increasingly critical for today's businesses. SQL is the de facto lingua franca for these endeavors, yet support for robust streaming analysis and management with SQL remains limited. Many approaches restrict semantics to a reduced subset of features and/or require a suite of non-standard constructs. Additionally, use of event timestamps to provide native support for analyzing events according to when they actually occurred is not pervasive, and often comes with important limitations.We present a three-part proposal for integrating robust streaming into the SQL standard, namely: (1) time-varying relations as a foundation for classical tables as well as streaming data, (2) event time semantics, (3) a limited set of optional keyword extensions to control the materialization of timevarying query results. Motivated and illustrated using examples and lessons learned from implementations in Apache Calcite, Apache Flink, and Apache Beam, we show how with these minimal additions it is possible to utilize the complete suite of standard SQL semantics to perform robust stream processing.Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.