This study examines procedures for consistently producing sound (crack and void free) welds using the autogenous (without filler metal) gas tungsten arc (GTA) welding process. Cast alloy Ti-48Al-2Cr-2Nb (at. pct) and extruded alloy Ti-46Al-2Cr-2Nb-0.9Mo (at. pct) have been examined to determine if sound welds can be produced using autogenous GTA welding without any preheat. Experimentation consisted of GTA spot welding samples of gamma titanium aluminide at weld current levels of 45, 55, 65, and 75 A for a duration of 3 seconds. For the cast alloy, current levels of 45, 55, and 65 A for 3 seconds produced similar fusion zone microstructures, which consisted of a dendritic solidification structure. The fusion zone microstructure of the 75 A for 3 seconds current level differed significantly from the lower current levels. It also consisted of a dendritic solidification structure; however, the morphology was quite different. For the extruded alloy, current levels of 45 and 55 A for 3 seconds produced fusion zone microstructures similar to the lower current level samples of the cast ␥-TiAl, which consisted of a dendritic solidification structure. The fusion zone microstructures of the 65 and 75 A samples were similar to each other, but they had a dendritic solidification structure of a different morphology than that of the 45 and 55 A samples. For both alloys at all current levels, microhardness profiles showed an increase in hardness from the base metal to the fusion zone. There were no significant differences in the average fusion zone hardness as a function of increasing current level. However, nanoindentation testing did show that certain phases and microconstituents in the fusion zone did have significant variations in hardness in relation to the enrichment and depletion of chromium.