“…Proposition 2.5 6, 21, 27 Let (( X , ≈), e ) be an L —ordered set and A ∈ L X . The following are equivalent: - A inf (respectively, A sup ) is an L —singleton.
- There exists (unique) x 0 ∈ X such that A inf ( x 0 )=1 (respectively, A sup ( x 0 )=1).
- There exists (unique) x 0 ∈ X such that A ( x ) ≤ e ( x 0 , x ) (respectively, A ( x ) ≤ e ( x , x 0 )) for any x ∈ X , and \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\bigwedge _{x\in X}(A(x)\rightarrow e(y, x))\le e(y, x_{0}) $\end{document} (respectively, \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$\bigwedge _{x\in X}(A(x)\rightarrow e(x, y))\le e(x_{0}, y) $\end{document}) for any y ∈ X .
…”