2021
DOI: 10.48550/arxiv.2110.06672
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The deep generative decoder: Using MAP estimates of representations

Abstract: A deep generative model is characterized by a representation space, its distribution, and a neural network mapping the representation to a distribution over vectors in feature space. Common methods such as variational autoencoders (VAEs) apply variational inference for training the neural network, but optimizing these models is often non-trivial. The encoder adds to the complexity of the model and introduces an amortization gap and the quality of the variational approximation is usually unknown. Additionally, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?