“…The time and spatial discretizations of Wasserstein gradient flows are extensively studied in literature (Jordan et al, 1998;Junge et al, 2017;Carrillo et al, 2021a,b;Bonet et al, 2021;Liutkus et al, 2019;Frogner & Poggio, 2020). Recently, neural networks have been applied in solving or approximating Wasserstein gradient flows (Mokrov et al, 2021;Lin et al, 2021b,a;Alvarez-Melis et al, 2021;Bunne et al, 2021;Hwang et al, 2021;Fan et al, 2021). For sampling algorithms, di Langosco et al (2021) learns the transportation function by solving an unregularized variational problem in the family of vector-output deep neural networks.…”