Superblocks are a common urban development strategy used in cities of the United Arab Emirates and the larger Gulf region. In planning new neighborhoods, these cities utilize superblocks structured using various street network designs. Despite their key role in shaping its main transportation network, the connectivity of these designs has not been frequently studied. This paper addresses this research gap, analyzing ten different superblock designs, and focusing on their internal and external connectivity properties. Internal connectivity is studied by measuring connections between plots in the superblocks. External connectivity is measured from plots to the superblocks’ corners, the points from which to access surrounding areas. Connectivity is measured in terms of distance, directness, and route diversity. The results show that strong similarities exist across the studied designs, particularly in terms of travel distances. Differences are found in terms of efficiency and, most notably, route diversity. Findings are discussed in relation to walkability, the costs associated to each design given network length variations, and the importance of creating rich and diverse street systems that support open-ended exploration. While based on a sample of ideal cases and in need of validation with built cases, this paper outlines a method by which to evaluate and compare superblock network design alternatives.