We present an approximation
to the state-interaction approach for
matrix product state (MPS) wave functions (MPSSI) in a nonorthogonal
molecular orbital basis, first presented by Knecht et al. [
J. Chem. Theory Comput.,
2016
,
28,
5881], that allows for a significant reduction of the computational
cost without significantly compromising its accuracy. The approximation
is well-suited if the molecular orbital basis is close to orthogonality,
and its reliability may be estimated a priori with a single numerical
parameter. For an example of a platinum azide complex, our approximation
offers up to 63-fold reduction in computational time compared to the
original method for wave function overlaps and spin–orbit couplings,
while still maintaining numerical accuracy.