Abstract. In a recent paper by Pham [11] a multidimensional model with stochastic volatility and portfolio constraints has been proposed, solving a class of investment problems. One feature which is common with these problems is that the resultant HamiltonJacobi-Bellman (HJB) partial differential equation (PDE) is highly nonlinear. Therefore, a transform is primordial to express the value function in terms of a semilinear PDE with quadratic growth on the derivative term. Some proofs for the existence of smooth solution to this equation have been provided for this equation by Pham [11]. In that paper they illustrated some common stochastic volatility examples in which most of the parameters are time-homogeneous. However, there are cases where time-dependent parameters are needed, such as in the calibrating financial models. Therefore, in this paper we extend the work of Pham[11] to the time-inhomogeneous case.Mathematics Subject Classification (2000): 93E20, 35K55, 60H30, 91B10.