Background Pathology in the long head of the biceps tendon often occurs in patients with rotator cuff tears. Arthroscopic tenotomy is the most common treatment. However, the role of the long head of the biceps at the shoulder and the consequences of surgical detachment on the remaining shoulder structures remain unknown. Questions/purposes We hypothesized that detachment of the long head of the biceps, in the presence of supraspinatus and infraspinatus tears, would decrease shoulder function and decrease mechanical and histologic properties of both the subscapularis tendon and the glenoid articular cartilage. Methods We detached the supraspinatus and infraspinatus or the supraspinatus, infraspinatus, and long head of the biceps after 4 weeks of overuse in a rat model. Animals were gradually returned to overuse activity after detachment. At 8 weeks, the subscapularis and glenoid cartilage biomechanical and histologic properties were evaluated and compared. Results The group with the supraspinatus, infraspinatus, and long head of the biceps detached had greater medial force and decreased change in propulsion, braking, and vertical force. This group also had an increased upper and lower subscapularis modulus but without any differences in glenoid cartilage modulus. Finally, this group had a significantly lower cell density in both the upper and lower subscapularis tendons, although cartilage histology was not different. Conclusions Detachment of the long head of the biceps tendon in the presence of a posterior-superior cuff tear resulted in improved shoulder function and less joint damage in this animal model. Clinical Relevance This study provides evidence in an animal model that supports the use of tenotomy for the management of long head of the biceps pathology in the presence of a two-tendon cuff tear. However, long-term clinical trials are required.