To effectively analyze building energy, it is important to utilize the environmental data that influence building energy consumption. This study analyzed outdoor and indoor data collected from buildings to find out the conditions of rooms that had a significant effect on heating and cooling energy consumption. To examine the conditions of the rooms in each building, the energy consumption importance priority was derived using the Gini importance of the random forest algorithm on external and internal environmental data. The conditions that had a significant effect on energy consumption were analyzed to be: (i) conditions related to the building designâwall, floor, and window area ratio, the window-to-wall ratio (WWR), the window-to-floor area ratio (WFR), and the azimuth, and (ii) the internal conditions of the buildingâthe illuminance, occupancy density, plug load, and frequency of room utilization. The room conditions derived through analysis were considered in each sample, and the final influential building energy consumption factors were derived by using them in a decision tree as being the WFR, window area ratio, floor area ratio, wall area ratio, and frequency of use. Furthermore, four room types were classified by combining the room conditions obtained from the key factor classifications derived in this study.