This paper presents a novel flexible tactile sensor structure and proposes an efficient decoupling algorithm for the tactile sensor. Firstly, structure of the sensor model is introduced, and the sensing mechanism of the sensor array based on force-sensitive conductive rubber is analyzed. Then the mapping relation between the resistances of conductive pillars and the three-dimensional force is deduced. After that, the force applied on the tactile sensor is decoupled from the resistance information by the improved Back Propagation Neural Network (BPNN) algorithm with the number of hidden layer nodes optimized. The flexible tactile sensor model achieves the decomposition of the three-dimensional information from the structure with its unique design, avoids the direct interference between electrodes of the sensor array, reduces the structural complexity and the nonlinear degree, improves the decoupling accuracy, and accelerates the decoupling rate.