THE PREDICTION OF SPOT POSITIONSit leaves the sphere of reflexion. Fig. 5 shows the geometry; the arc AA' is the track of a reciprocal-lattice point rotated about R, and RA=r, and RR=RM= MA, the radius of the circle which the spehre of reflexion cuts in the n-layer net. Then cos r/= [r2/{2 x (RR)2}] -1.Thus, a reflexion generated at A will appear in the top half of the record with z-coordinate = zt, corresponding to ~0; and, after the crystal has been rotated by 2 × t/, the reflexion at A' will appear on the lower half of the film with z coordinate = Zl, corresponding to (~0 + 2 x t/); or, zl = z~ + r/.A program written in FORTRAN IV for an ICL 1905 computer to perform the operations analysed above is available from the author. Measurement and theoretical estimate of the anharmonic non-quadratic contribution to the DebyeWaller factor for NaC1 are reported. For the experiment the M6ssbauer ),-ray diffraction technique was used to find the elastic diffracted intensity separated from the thermal diffuse scattering. The theoretical treatment makes use of the asymptotic form of the displacement correlation functions to give simple explicit expressions for the non-quadratic term. The role of the relevant lattice dynamical parameters is discussed. The deviation from the Gaussian form of the Debye-Waller factor is shown to be large enough to be observed, and the possibility of estimating the third-order anharmonic coupling constant from such a measurement is indicated.