Background:The conformational cycle of MalFGK 2 is stimulated by ATP, MalE, and maltose. Results: The transporter outward facing conformation depends on ATP only. Conclusion: MalE and maltose must therefore stimulate the return of the transporter to the inward facing state. Significance: Understanding the dynamics of the transporter is important to interpret the crystal structures.The maltose transporter MalFGK 2 is a study prototype for ABC importers. During catalysis, the MalFG membrane domain alternates between inward and outward facing conformations when the MalK dimer closes and hydrolyzes ATP. Because a rapid ATP hydrolysis depends on MalE and maltose, it has been proposed that closed liganded MalE facilitates the transition to the outward facing conformation. Here we find that, in contrast to the expected, ATP is sufficient for the closure of MalK and for the conversion of MalFG to the outward facing state. The outward facing transporter binds MalE with nanomolar affinity, yet neither MalE nor maltose is necessary or facilitates the transition. Thus, the rapid hydrolysis of ATP observed in the presence of MalE and maltose is not because closed liganded MalE accelerates the formation of the outward facing conformation. These findings have fundamental implications for the description of the transport reaction.
ATP-binding cassette (ABC)3 transporters are found both in prokaryotes and eukaryotes and transport a wide variety of substrates in and out of cells. The understanding of their mode of operation is relevant for medically important processes such as multidrug resistance, chloride conductance, cholesterol transport, and surface-antigen presentation (1). In bacteria, the maltose transporter has been studied for several decades as the prototype of ABC importers (2-4). The transporter is comprised of a cytosolic homodimeric ABC domain MalK bound to a membrane domain heterodimer, MalFG. On its periplasmic side, the transporter associates with the substrate-binding protein MalE that acts as a receptor for maltose.Major progress in the description of ABC transporters has been achieved by x-ray crystallography (5-7). In the structure of MalFGK 2 without ligands, the sites for ATP binding on the MalK dimer are separated, and the MalFG membrane domain forms a cavity that is exposed to the cytosol (inward facing state) (8). In the structure obtained in the presence of MalE and nonhydrolyzable ATP analogs, the ATP-binding sites are bound together, whereas the MalFG cavity opens toward the periplasm (outward facing state) (6, 9). Together, these snapshots of the transporter structure have provided the molecular framework to explain how ATP binding and hydrolysis is coupled to membrane transport, the so-called alternating access mechanism. However, what triggers the transport reaction, why MalE stimulates ATP hydrolysis even in the absence of maltose, and how maltose is transferred from MalE to MalFG remain unclear.MalE consists of two lobes with the maltose-binding site located at the interface. When the sugar bind...