Abstract:We examine the conjecture, due to Champanerkar, Kofman, and Purcell [4] that vol(K) < 2π log det(K) for alternating hyperbolic links, where vol(K) = vol(S 3 \K) is the hyperbolic volume and det(K) is the determinant of K. We prove that the conjecture holds for 2-bridge links, alternating 3-braids, and various other infinite families. We show the conjecture holds for highly twisted links and quantify this by showing the conjecture holds when the crossing number of K exceeds some function of the twist number of… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.