For reinforcement, the photochromic field and the cooperation between the theoretical and experimental branches of physics, the computational, theoretical artificial neural networks (CTANNs) and the resilient back propagation (R[Formula: see text]) training algorithm were used to model optical characterizations of casting (Admantan-Fulgide) thin films with different concentrations. The simulated values of ANN are in good agreement with the experimental data. The model was also used to predict values, which were not included in the training. The high precision of the model has been constructed. Moreover, the concentration dependence of both the energy gaps and Urbach’s tail were, also tested. The capability of the technique to simulate the experimental information with best accuracy and the foretelling of some concentrations which is not involved in the experimental data recommends it to dominate the modeling technique in casting (Admantan-Fulgide) thin films.