Porous clay-precipitated calcium carbonates were prepared via polymeric sponge replication method using precipitated calcium carbonates (PCC) and red clay as raw materials. Different compositions of precipitated calcium carbonates (PCC) which is 10 wt.% and 15 wt.% with 24 hours and 48 hours milling time were sintered at 1250°C for 2 hours respectively which influenced the flexural strength and morphology of the porous ceramic. The highest flexural strength (1.843 MPa) were obtained by 10 wt.% [CaCO3]PCC milled at 24 hours related to the lowest percentage of porosity (81.00%). Mineralogical characterization of porous ceramic were determined via X-ray diffraction (XRD) shows the presence of crystalline phases such as anorthite (2CaAl2Si2O8), gehlenite (Ca2Al2SiO7) and esseneite (CaFeAlSiO6) after sintering process. The morphological analysis via stereomicroscope shows that the porosity and struts were found due to presence of precipitated calcium carbonates that act as pore forming agent. The colour of porous ceramic between 10 wt.% [CaCO3]PCC and 15 wt.% [CaCO3]PCC shows significant difference due to iron oxide contained in the red clay which contributes to the colour of the samples. Crack propagates in the intergranular type of fracture mode due to resulted porous ceramic is a brittle material.