Adult human cognition is supported by systems of brain regions, or modules, that are functionally coherent at rest and collectively activated by distinct task requirements. However, an understanding of how the formation of these modules supports evolving cognitive capabilities has not been delineated. Here, we quantify the formation of network modules in a sample of 780 youth (aged 8-22 y) who were studied as part of the Philadelphia Neurodevelopmental Cohort. We demonstrate that the brain's functional network organization changes in youth through a process of modular evolution that is governed by the specific cognitive roles of each system, as defined by the balance of within-vs. between-module connectivity. Moreover, individual variability in these roles is correlated with cognitive performance. Collectively, these results suggest that dynamic maturation of network modules in youth may be a critical driver for the development of cognition.neurodevelopment | graph theory | network science | modularity | brain network T he human brain is composed of large-scale functional networks that are coherent at rest, forming identifiable modules that support specific cognitive functions (1-3). These modules include well-known subsystems, such as the default-mode, visual, motor, auditory, attention, salience, and cognitive control systems. Prior research has shown that this modular structure evolves considerably during development in youth (4, 5) and across the life span (6, 7). Network modularity, a measure of the segregation between modules, is high during young adulthood and decreases across the latter life span (6, 7). Other features of network reorganization accompany development (8), including a growing preference for interactions between hubs and nonhubs (9), and between regions separated by large physical distances (10).Although prior research has explored such changes in gross network features, it remains unknown how the relationships between specific types of cognitive systems evolve during adolescent development. Ongoing developmental changes in connectivity between cognitive systems are suggested by known differences in how these systems are organized in the adult brain: Primary motor and sensory systems display a high degree of segregation with limited connections to other modules, whereas higher order cognitive systems have more between-module connectivity (1). Moreover, the disparate connectivity profiles of such systems may be critical for optimal cognitive functioning (11). Differentiation of specific network modules may thus support the burgeoning cognitive, emotional, and motor capabilities seen during adolescence (12). Furthermore, abnormalities in functional network organization are a ubiquitous finding in major neuropsychiatric conditions (11), which are increasingly considered disorders of neurodevelopment (13). Thus, a quantitative characterization of the modular maturation of functional networks in youth is critical to understanding the development of both normal and abnormal brain function.Here, w...