2020
DOI: 10.1007/s00407-020-00266-9
|View full text |Cite
|
Sign up to set email alerts
|

The development of the concept of uniform convergence in Karl Weierstrass’s lectures and publications between 1861 and 1886

Abstract: The history of uniform convergence is typically focused on the contributions of Cauchy, Seidel, Stokes, and Björling. While the mathematical contributions of these individuals to the concept of uniform convergence have been much discussed, Weierstrass is considered to be the actual inventor of today’s concept. This view is often based on his well-known article from 1841. However, Weierstrass’s works on a rigorous foundation of analytic and elliptic functions date primarily from his lecture courses at the Unive… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 16 publications
0
2
0
Order By: Relevance
“…Cauchy firstly came out with the theory of uniform convergence. Later, Seidel and Stokes pointed out Cauchy's limitations [5]. Cauchy then acknowledged their advice and reached the Stokes' conclusions [6].…”
Section: Introductionmentioning
confidence: 99%
“…Cauchy firstly came out with the theory of uniform convergence. Later, Seidel and Stokes pointed out Cauchy's limitations [5]. Cauchy then acknowledged their advice and reached the Stokes' conclusions [6].…”
Section: Introductionmentioning
confidence: 99%
“…In this sense, as Maz, Torralbo and Rico [2] note, research on the history of mathematics education shows and explains the process of incorporating new mathematical advances into the teaching of the subject and identifies how the social, political and academic context influences the way in which they are approached and disseminated within the current educational system. Thus, in this field of study, in addition to those that address the state of the art [1] and the different research methodologies [3][4][5], there have been many studies that examine curricula, educational legislation, teaching resources and textbooks [6,7], identify the influence of philosophical, political, social, economic and cultural tendencies on mathematics education [8,9], analyse the evolution of the teaching role [10] and determine the contribution of historical character or educational institutions to mathematics education [11][12][13][14].…”
Section: Introductionmentioning
confidence: 99%