The aim of this study was to investigate the strategies used by third graders in solving the 81 elementary subtractions that are the inverses of the one-digit additions with addends from 1 to 9 recently studied by Barrouillet and Lépine. Although the pattern of relationship between individual differences in working memory, on the one hand, and strategy choices and response times, on the other, was the same in both operations, subtraction and addition differed in two important ways. First, the strategy of direct retrieval was less frequent in subtraction than in addition and was even less frequent in subtraction solving than the recourse to the corresponding additive fact. Second, contrary to addition, the retrieval of subtractive answers is confined to some peculiar problems involving 1 as the subtrahend or the remainder. The implications of these findings for developmental theories of mental arithmetic are discussed.