Femoroacetabular impingement (FAI) is a cause of hip pain, particularly in young adults, and it is a syndrome in which the development of osteoarthritis can be prevented with early diagnosis and treatment. [1] It is one of the major causes of hip pain in young individuals, and progression of the problem results in osteoarthritis. Early diagnosis is important in the prevention of osteoarthritis. It is also important to make the differential diagnosis of other causes of hip pain to prevent unnecessary and wrong treatments. [2] The hip joint is a ball and socket joint. The femoral head fits into the acetabulum and can easily Objectives: The aim of this study was to evaluate diagnostic ability of deep learning models, particularly convolutional neural network models used for image classification, for femoroacetabular impingement (FAI) using hip radiographs.
Materials and methods:Between January 2010 and December 2020, pelvic radiographs of a total of 516 patients (270 males, 246 females; mean age: 39.1±3.8 years; range, 20 to 78 years) with hip pain were retrospectively analyzed. Based on inclusion and exclusion criteria, a total of 888 hip radiographs (308 diagnosed with FAI and 508 considered normal) were evaluated using deep learning methods. Pre-trained VGG-16, ResNet-101, MobileNetV2, and Inceptionv3 models were used for transfer learning.
Results:As assessed by performance measures such as accuracy, sensitivity, specificity, precision, F-1 score, and area under the curve (AUC), the VGG-16 model outperformed other pre-trained networks in diagnosing FAI. With the pre-trained VGG-16 model, the results showed 86.6% accuracy, 82.5% sensitivity, 89.6% specificity, 85.5% precision, 83.9% F1 score, and 0.92 AUC.
Conclusion:In patients with suspected FAI, pelvic radiography is the first imaging method to be applied, and deep learning methods can help in the diagnosis of this syndrome.