BackgroundMild traumatic brain injury (TBI) or concussion is common in many sports. Today, neuropsychological evaluation is recommended in the monitoring of a concussion and in return-to-play considerations. To investigate the sensitivity of neuropsychological assessment, we tested amateur boxers post bout and compared with controls. Further the relationship between neuropsychological test results and brain injury biomarkers in the cerebrospinal fluid (CSF) were investigated.MethodThirty amateur boxers on high elite level with a minimum of 45 bouts and 25 non-boxing matched controls were included. Memory tests (Rey Osterrieth Complex Figure, Listening Span, Digit Span, Controlled Word Association Test, and computerized testing of episodic memory), tests of processing speed and executive functions (Trail Making, Reaction Time, and Finger Tapping) were performed and related to previously published CSF biomarker results for the axonal injury marker neurofilament light (NFL).ResultsThe neurological assessment showed no significant differences between boxers and controls, although elevated CSF NFL, as a sign of axonal injury, was detected in about 80% of the boxers 1–6 days post bout. The investigation of the relationship between neuropsychological evaluation and CSF NFL concentrations revealed that boxers with persisting NFL concentration elevation after at least 14 days resting time post bout, had a significantly poorer performance on Trail Making A (p = 0.041) and Simple Reaction Time (p = 0.042) compared to other boxers.ConclusionThis is the first study showing traumatic axonal brain injury can be present without measureable cognitive impairment. The repetitive, subconcussive head trauma in amateur boxing causes axonal injury that can be detected with analysis of CSF NFL, but is not sufficient to produce impairment in memory tests, tests of processing speed, or executive functions. The association of prolonged CSF NFL increase in boxers with impairment of processing speed is an interesting observation, which needs to be verified in larger studies.