1986
DOI: 10.4095/302633
|View full text |Cite
|
Sign up to set email alerts
|

The diffusion of liquids in pores

Abstract: An equation for the diffusion of solute molecules in pores filled with liquids has been developed. It has been found to represent the diffusion of a variety of materials, from simple molecules to fractions of petroleum asphaltenes.On a Btabli une Bquation pour la diffusion de molkcules de solutB dans des pores remplies de liquides. On a montrB qu'elle peut reprksenter la diffusion de matBriaux aussi divers que des moltkules simples ou des fractions d'asphaltknes de p6trole.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
6
0
1

Year Published

1987
1987
2017
2017

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(8 citation statements)
references
References 15 publications
1
6
0
1
Order By: Relevance
“…The Ternan model is not able to fit the protein behaviour, but it reasonably fits the polymer one. If the P parameter can be negative, so the viscosity gradient is negative, the fit to protein data at Baltus and Anderson (1983) with asphaltene fractions in mica membranes, whose P value was 2.017 (Ternan, 1987). Results in this study for proteins are similar to those for polyethyleneglycol and dextran from Shao and Baltus (2000a).…”
Section: Resultssupporting
confidence: 74%
See 4 more Smart Citations
“…The Ternan model is not able to fit the protein behaviour, but it reasonably fits the polymer one. If the P parameter can be negative, so the viscosity gradient is negative, the fit to protein data at Baltus and Anderson (1983) with asphaltene fractions in mica membranes, whose P value was 2.017 (Ternan, 1987). Results in this study for proteins are similar to those for polyethyleneglycol and dextran from Shao and Baltus (2000a).…”
Section: Resultssupporting
confidence: 74%
“…(b) The semiempirical Ternan modelo or model 2 (Ternan, 1987). (c) The model of Shao and Baltus for the LW interaction between a spherical particle and a plane, called model 3 (Shao and Baltus, 2000a,b).…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations