Samarium doped lead phosphate glass modified with niobium having a composition (in mol%) of 55P(2)O(5)+39.5PbO+5Nb(2)O(5)+0.5Sm(2)O(3) has been prepared by the conventional melt quenching technique. The emission spectra and the decay curves for the (4)G(5/2) level of Sm(3+) ions have been measured as a function of pressure up to 23.6 GPa at room temperature. A discontinuity in the observed shifts and crystal-field splittings as a function of pressure around 9-10 GPa suggests that a phase transition is taking place in the glass matrix. The [Formula: see text], (6)H(7/2) and (6)H(9/2) transitions are shifted towards the lower energy side with magnitudes of -7.1, -7.6 and -5.5 cm(-1) GPa(-1) up to 8.9 GPa (phase 1) and -5.6, -4.9 and -4.4 cm(-1) GPa(-1) beyond 10.3 GPa (phase 2), respectively. A much stronger increase in the splitting of the [Formula: see text] and [Formula: see text] Stark levels with pressure is observed in phase 1 than in phase 2. The lifetime of the (4)G(5/2) level decreases from 2.29 ms (0 GPa) to 0.64 ms (23.6 GPa) with pressure. The decay curves of the (4)G(5/2) level exhibit non-exponential behavior for all the pressures and were fitted by the generalized Yokota-Tanimoto model to probe the nature of the energy transfer process. The best fits with S = 6 indicate that the energy transfer between donor and acceptor is of dipole-dipole type. The crystal-field splitting experienced by the Sm(3+) ions in the title glass are found to be larger than those found in borate, K-Ba-Al phosphate and tellurite glasses.