This perspective provides a rationale for redesigning and a framework for expanding the graduate health science analytics and biomedical doctoral program curricula. It responds to digital revolution pressures, ubiquitous proliferation of big biomedical data, substantial recent advances in scientific technologies, and rapid progress in health analytics. Specifically, the paper presents a set of common prerequisites, a proposal for core computational and data analytic curriculum, and a list of expected outcome competencies for graduates of doctoral health science and biomedical programs. The manuscript emphasizes the necessity for coordinated efforts of all stakeholders, including trainees, educators, academic institutions, funding agencies, and policy makers. Concrete recommendations are presented of how to ensure graduates with terminal health science analytics and biomedical degrees are trained and able to continuously self-learn, effectively communicate across disciplines, and promote adaptation and change to counteract the relentless pace of automation and the law of diminishing returns.