2024
DOI: 10.1093/imrn/rnae101
|View full text |Cite
|
Sign up to set email alerts
|

The Dimension of the Set of ψ-Badly Approximable Points in All Ambient Dimensions: On a Question of Beresnevich and Velani

Henna Koivusalo,
Jason Levesley,
Benjamin Ward
et al.

Abstract: Let $\psi :{\mathbb{N}} \to [0,\infty )$, $\psi (q)=q^{-(1+\tau )}$ and let $\psi $-badly approximable points be those vectors in ${\mathbb{R}}^{d}$ that are $\psi $-well approximable, but not $c\psi $-well approximable for arbitrarily small constants $c>0$. We establish that the $\psi $-badly approximable points have the Hausdorff dimension of the $\psi $-well approximable points, the dimension taking the value $(d+1)/(\tau +1)$ familiar from theorems of Besicovitch and Jarník. The method of proof is a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?