1989
DOI: 10.1088/0305-4470/22/17/002
|View full text |Cite
|
Sign up to set email alerts
|

The Dirac oscillator

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

10
701
0
4

Year Published

1991
1991
2017
2017

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 737 publications
(715 citation statements)
references
References 0 publications
10
701
0
4
Order By: Relevance
“…The Dirac oscillator was introduced for the first time by Itô et al [7], in which the momentum → in Dirac equation is replaced by → − 0→ , where → is the position vector and 0 , , andã re the mass of particle, the frequency of the oscillator, and the usual Dirac matrices, respectively. Similar system was studied by Moshinsky and Szczepaniak [8], who gave it the name of Dirac oscillator; due to the nonrelativistic limit, it becomes a simple harmonic oscillator with strong spin-orbit coupling term. In quantum optics and for (2 + 1)-dimension space, it is seen that the Dirac oscillator system can be mapped into Anti-Jaynes-Cummings model [9][10][11] which describes the atomic transitions in a two-level system.…”
Section: Introductionmentioning
confidence: 84%
“…The Dirac oscillator was introduced for the first time by Itô et al [7], in which the momentum → in Dirac equation is replaced by → − 0→ , where → is the position vector and 0 , , andã re the mass of particle, the frequency of the oscillator, and the usual Dirac matrices, respectively. Similar system was studied by Moshinsky and Szczepaniak [8], who gave it the name of Dirac oscillator; due to the nonrelativistic limit, it becomes a simple harmonic oscillator with strong spin-orbit coupling term. In quantum optics and for (2 + 1)-dimension space, it is seen that the Dirac oscillator system can be mapped into Anti-Jaynes-Cummings model [9][10][11] which describes the atomic transitions in a two-level system.…”
Section: Introductionmentioning
confidence: 84%
“…Another application for these models is in the study of the radial motion of test particle near the horizon of extremal Reissner-Nordström black holes [35,37]. Also, another interesting application of the superconformal symmetry is the treatment of the Dirac oscillator, in the context of the superconformal quantum mechanics [39][40][41][42]46].…”
Section: The Superconformal Quantum Mechanics From Wh Algebramentioning
confidence: 99%
“…Выбирая различными способами A(x) и W (x), можно задать суперпотенциал и нере-лятивистский энергетический спектр в соответствии с формулами (18) и (16), а за-тем, подставляя их в уравнение (20), найти электростатический потенциал, который соответствует уравнению Дирака (6). Релятивистскую энергию также можно найти из нерелятивистской энергии E(n, m), используя уравнение (21).…”
Section: уравнение дирака со сферически-симметричными и форминвариантunclassified
“…Решения уравнения Дирака с такими физическими потенциала-ми, как кулоновский потенциал [4], потенциал Морзе [5], потенциал гармоническо-го осциллятора [6] и т.д., также рассматривались как релятивистские обобщения этих потенциалов. В работе [7] уравнение Дирака было решено для заряженно-го спинора в электромагнитном поле для сферически-симметричных потенциалов Дирака-Розена-Морзе, Дирака-Экарта, Дирака-Скарфа и Дирака-Пошля-Теллера.…”
Section: Introductionunclassified