A computer program has been developed to model and analyze the data from photoelectron photoion coincidence (PEPICO) spectroscopy experiments. This code has been used during the past 12 years to extract thermochemical and kinetics information for almost a hundred systems, and the results have been published in over forty papers. It models the dissociative photoionization process in the threshold PEPICO experiment by calculating the thermal energy distribution of the neutral molecule, the energy distribution of the molecular ion as a function of the photon energy, and the resolution of the experiment. Parallel or consecutive dissociation paths of the molecular ion and also of the resulting fragment ions are modeled to reproduce the experimental breakdown curves and time-of-flight distributions. The latter are used to extract the experimental dissociation rates. For slow dissociations, either the quasi-exponential fragment peak shapes or, when the mass resolution is insufficient to model the peak shapes explicitly, the center of mass of the peaks can be used to obtain the rate constants. The internal energy distribution of the fragment ions is calculated from the densities of states using the microcanonical formalism to describe consecutive dissociations. Dissociation rates can be calculated by the RRKM, SSACM or VTST rate theories, and can include tunneling effects, as well. Isomerization of the dissociating ions can also be considered using analytical formulae for the dissociation rates either from the original or the isomer ions. The program can optimize the various input parameters to find a good fit to the experimental data, using the downhill simplex algorithm.