Environmental context. Studies of manufactured nanoparticles (NPs) in the environment have been performed almost exclusively at high NP concentrations. These data lead to misunderstandings related to NP fate and effects at relevant environmental concentrations, which are expected to be low. A better understanding of the concentration-dependent behaviour of NPs will improve our understanding of their fate and effects under environmentally realistic conditions.Abstract. This rapid communication highlights the importance of nanoparticle concentration in determining their environmental fate and behaviour. Notably, two fate processes have been considered: dissolution and aggregation. The decrease in nanoparticle concentration results in increased dissolution and decreased aggregate sizes, inferring higher potential for environmental transport of nanoparticles. The behaviour (e.g, dissolution, aggregation, disaggregation) and fate (e.g. mobility, fugacity, non-transient (sink) or transient source) of nanoparticles (NPs) in environmental and toxicological media have been investigated for over a decade, typically at high NP concentrations (e.g. milligram per litre range) which are not relevant to the environment, [1] resulting in some potentially misleading assumptions that (i) NP behaviour is dominated by aggregation and thus their fate is dominated by sedimentation and removal from the water column, or, in porous media, deposition and removal from the aqueous phase [2] ; (ii) NP dissolution is limited for many NPs and rarely are all NPs dissolved fully in environmental and biological media over relevant timescales [1] and (iii) many NPs therefore impart little or no toxic risk to pelagic organisms as a result of limited NP dissolution and NP removal by aggregation and sedimentation. [3] Several NP groups (e.g. Ag NPs, Cu NPs, Cd NPs, ZnO) may undergo dissolution and release ions with well known toxic effects. [4] These various issues complicate NP risk characterisation and are exacerbated by the general use of high NP concentrations in NP fate, behaviour and ecotoxicological studies. [2,5] Use of high NP concentrations has been motivated by poor detection limits of available analytical techniques (e.g. dynamic light scattering, laser Doppler electrophoresis, UV-Vis spectroscopy) together with enhanced likelihood of observing more pronounced changes and effects at high NP concentrations. [6] Furthermore, most published nanoecotoxicological data are acute exposure studies, which also drive the high concentration selection bias in order to generate measurable biological responses. Many NPs tested for toxicity to aquatic organisms have been non-toxic on acute time scales until they reach unrealistically high exposure concentrations. Clear predictive linkages between unrealistic high acute exposures and more realistic low chronic exposures have not been established for aquatic systems, and are likely to be further complicated by differing concentration-dependent behaviours of NPs.Despite these concerns, little attention ha...