Carpal tunnel syndrome (CTS) is a pathology affecting hand function caused by median nerve overload. Numbness in the fingers, a loss of sensory and motor function in the hand, and pain are all symptoms of carpal tunnel syndrome. The lack of numerical data about the median nerve mechanical strain inside the carpal tunnel is the main disadvantage of current clinical approaches employed in carpal syndrome diagnostics. Moreover, application of each diagnostic method alone often leads to misdiagnosis. We proposed a combined approach including hand motion capture, finite element modelling (FEM), and electromechanical simulations to evaluate median nerve compression and find a correlation with hand mobility. The hand motion capture provided the boundary conditions for FEM. After that, FEM simulations of finger flexion and hand flexion / extension were performed. Further, FEM results were put in the electrical model of nerve conduction based on the Hodgkin-Huxley model and extended cable equation. It was exhibited median nerve conduction reduced significantly throughout the flexion and extension of the hand that compared to finger flexion. During finger flexion and hand flexion and extension, the load distribution over each of nine finger flexor tendons was evaluated. The tendons of the index finger were found to have the highest Mises stress values. It was found how tendon and connective tissue contact types affected carpal tunnel pressure. The difference between the contact types was 31.7% for hand extension and 59.9% for hand flexion. The developed approach has the potential to become an alternative diagnostic method for CTS at early stages. Additionally, it can be employed as non-invasive procedure for evaluation of carpal nerve stress.