Dupuytren's disease is a palmar fibromatosis associated with changes in fibroblast activity that also affect the metabolism of extracellular matrix components. In contrast to disease connected alterations in collagen and non-collagenous glycoproteins (mainly fibronectin), the metabolism of proteoglycans, being glycosaminoglycan modified glycoproteins, is poorly understood. Thus, the aim of the present study was the characterization of matrix proteoglycans (PGs) derived from normal fascia and Dupuytren's fascia. Extracted and purified PGs (particularly small PGs) were analysed for content, molecular mass, immunoreactivity and glycosaminoglycan chain structure. The matrix of normal fascia mainly contains decorin [small dermatan sulfate (DS) PG] with biglycan (another small DSPG) and large chondroitin sulfate(CS)/DSPG representing minor components. Dupuytren's disease is associated with the remodeling of matrix PG composition. The most prominent alteration is an accumulation of biglycan frequently bearing DS chains with higher molecular masses. Moreover, the amount of large CS/DSPG is increased. In contrast, decorin displays changes affecting mainly DS chain structure reflected in (i) an increase in some chain molecular masses, (ii) an enhanced content of iduronate disaccharide clusters, and (iii) oversulfation of disaccharide repeats. The PG alterations observed in Dupuytren's fascia may influence the matrix properties and contribute to disease progression.