For each 1 ≤ p < ∞, a space of integrable Schwartz distributions L′p, is defined by taking the distributional derivative of all functions in L p. Here, L p is with respect to Lebesgue measure on the real line. If f ∈ L′p such that f is the distributional derivative of F ∈ L p, then the integral is defined as $\int\limits_{ - \infty }^\infty {fG} = - \int\limits_{ - \infty }^\infty {F(x)g(x)dx} $, where g ∈ L q, $G(x) = \int\limits_0^x {g(t)dt} $ and 1/p + 1/q =1. A norm is ‖f‖p′ = ‖F‖p. The spaces L′p and L p are isometrically isomorphic. Distributions in L′p share many properties with functions in L p. Hence, L′p is reflexive, its dual space is identified with L q, there is a type of Hölder inequality, continuity in norm, convergence theorems, Gateaux derivative. It is a Banach lattice and abstract L-space. Convolutions and Fourier transforms are defined. Convolution with the Poisson kernel is well defined and provides a solution to the half plane Dirichlet problem, boundary values being taken on in the new norm. A product is defined that makes L′1 into a Banach algebra isometrically isomorphic to the convolution algebra on L 1. Spaces of higher order derivatives of L p functions are defined. These are also Banach spaces isometrically isomorphic to L p.