The relation between exposure to single metal/metalloid and the risk of chronic kidney disease (CKD) remains unclear. We aimed to determine the single and mixed associations of 21 heavy metals/metalloids exposure and the risk of CKD. We performed a cross-sectional study that recruited 4055 participants. Multivariate logistic regression, linear regression and weighted quantile sum (WQS) regression were conducted to explore the possible effects of single and mixed metals/metalloids exposure on the risk of CKD, the risk of albuminuria and changes in the estimated glomerular filtration rate (eGFR). In single-metal models, Cu, Fe, and Zn were positively associated with increased risks of CKD (P-trend < 0.05). Compared to the lowest level, the highest quartiles of Cu (OR = 2.94; 95% CI: 1.70, 5.11; P-trend < 0.05), Fe (OR = 2.39; 95% CI: 1.42, 4.02; P-trend < 0.05), and Zn (OR = 2.35; 95% CI: 1.31, 4.24; P-trend < 0.05) were associated with an increased risk of CKD. After multi-metal adjustment, the association with the risk of CKD remained robust for Cu (P < 0.05). Weighted quantile sum regression revealed a positive association between mixed metals/metalloids and the risk of CKD, and the association was largely driven by Cu (43.7%). Specifically, the mixture of urinary metals/metalloids was positively associated with the risk of albuminuria and negatively associated with eGFR.