Interest in improving plant nitrogen use efficiency (NUE) in conjunction with reduced usage of nitrogen (N) fertilizers in forestry management is growing. Although biochar amendment is widely applied to increase soil nutrient availability and NUE, the mechanism underlying their positive effects remains little understood. We treated the economically important eucalypt species with biochar (BC), N-enriched fertilizer with 15N isotope labeling (NF), and biochar plus 15N-labeled fertilizer (NFB). Moreover, we determined plant N absorption and soil N availability, soil bacterial community composition and its putative keystone taxa, and plant NUE and competition index under different treatments. Our results indicated that NF and NFB significantly increased plant atom % 15N in both eucalypt stem, root, and foliar, as well as the competition index of eucalypt to forbs for acquiring N. NF and BC increased the network complexity of keystone taxa by shifting putative keystone taxa, including phylum Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, and Firmicutes. Piecewise structural equation modeling indicated that variations in plant performance were best directly and positively predicted by soil Proteobacteria. This study highlights the importance of interactive effects between biochar and N fertilizer on plant performance mediated by soil microbial community. The change in soil putative keystone taxa has the potential to be a suitable predictor for plant performance in terms of biochar. Our findings may provide important implications for improving fertilization and afforestation management.